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ABSTRACT: Two types of decision-making processes have been identified in the literature:

an analytical process and an intuitive process. One conceptual model of the latter is the

recognition-primed decision (RPD) model (e.g., Klein, 2008). According to this model,

decision making in naturalistic contexts entails a situational pattern-recognition process

that, if subsequent expectancies are confirmed, leads the decision maker to render a

decision to engage in a given course of action. In this paper, we describe a 

system dynamics model of Klein’s RPD framework that focuses upon the dynamics of

the decision-making process. The structure of our RPD model is based on a model of a

set of laboratory phenomena called conjunction benefits and costs (e.g., L. R. Fournier,

Patterson, Dyre, Wiediger, & Winters, 2007), which was extended to encompass the

RPD framework. The results of our simulations suggest that decision priming (a bias

toward rendering a given decision based on prior information) is a phenomenon that

should occur in many naturalistic settings.

Introduction

MANY AUTHORS (E.G., EVANS, 1984, 2003, 2008; HAMMOND, 2007; HOGARTH, 2001;
Kahneman & Frederick, 2002; Sloman, 1996; Stanovich & West, 2000) have
recently proposed that human decision making is composed of a blend of two
complementary systems, an analytical system and an intuitive or heuristic system,
which compete for control of thinking and reasoning. Analytical decision making
refers to making conscious decisions that entail the contrasting of options and the
assessment of their likelihood and possible consequences. Evans (2003) has
argued that the analytical system is evolutionarily recent, permits abstract reason-
ing, is correlated with measures of general intelligence, and is constrained by
working memory capacity. Many authors have argued that this system is slow,
deliberative, effortful, abstract, rule-based, and symbolic.
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Intuitive decision making (knowing without deliberation) refers to making
decisions via steps that are largely unconscious and based on situational pattern
recognition. Evans (2003) has suggested that the intuitive system is old in evolu-
tionary terms and that it comprises a set of autonomous subsystems that involve
domain-specific knowledge. Many authors have argued that the intuitive system is
fast, automatic, relatively effortless, associative, concrete, and related to high-level
perception. This system makes use of acquired experience and expertise (Klein
et al., 2003). According to Lopes and Oden (1991; see also Chase & Simon, 1973a,
1973b), pattern recognition–based decision making has the advantage of reducing
the problem of cognitive inference to one of identification and recognition. This
system is good for rendering decisions under stressful conditions involving data
overload, high uncertainty, time pressure, high risk, high stakes, and ill-defined
goals (Klein, 1997, 1998, 2008; Zsambok & Klein, 1997).

One conceptual model of intuitive decision making is called the recognition-
primed decision model by Klein (e.g., 1997, 1998, 2008).

Recognition-Primed Decision Making
Klein (e.g., 1997, 1998, 2008) proposed a conceptual model of intuitive deci-

sion making called the recognition-primed decision (RPD) model. This model is com-
posed of three components: one for matching, one for diagnosing, and one for
simulating a course of action. Figure 1 depicts the matching and diagnosing compo-
nents; the former is shown by the box labeled “pattern recognition” and the latter by
the box labeled “clarify/diagnose (story building).” In this model, an individual with
expertise identifies a current problem situation as typical and familiar based upon
a composite situation stored in memory and, with subsequent expectations con-
firmed, initiates an appropriate course of action, which is typically the first one
considered. Klein (1997, 1998, 2008) also proposed that an individual may men-
tally simulate a course of action before actually implementing it (not shown in
Figure 1). If the situation is unfamiliar, however, or if subsequent expectations are

Figure 1. Diagram of the recognition-primed decision model. If an individual experi-
ences a situation as typical and familiar and recognizes the pattern, he or she decides to
implement a course of action if expectancies are confirmed. If the situation is atypical
and unfamiliar, or if expectancies are violated, then the individual decides to clarify and
diagnose the situation, which can involve story building.
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violated, then the individual will choose to diagnose and clarify the situation fur-
ther, which may include story building.

The basic idea of Klein’s (1997, 1998, 2008) RPD model has been empirically
supported. For example, Klein, Wolf, Militello, and Zsambok (1995) investigated
the moves selected by mediocre and very strong chess players. For both groups of
players, the first move selected was typically much stronger than that expected from
random sampling. Moreover, Calderwood, Klein, and Crandall (1988; see also
Chase & Simon, 1973a, 1973b) found that the error rate of chess experts was low,
and remained unchanged, under extreme time pressure (6 s per move) relative to
play under regulation conditions (more than 2 min per move). The results of both
studies suggested that the chess experts were engaged in pattern matching rather
than contrasting multiple options, consistent with assumptions of the RPD model.

In the present paper, we present a formal computational model of the dynamics
of Klein’s RPD framework employing system dynamics methodology. We focus on
the match and diagnose components of Klein’s model. These components convey
the idea that an initial pattern-matching (situation-matching) process is first
undertaken, followed by a subsequent situational assessment that entails a further
pattern-matching process that may confirm or violate expectations. If both the ini-
tial situational pattern is matched and expectations are subsequently confirmed,
then a decision to act is made.

This model implies a framework based on parallel information-processing
channels with nested decisional operators (PCNDO). One type of operator would
be an XOR gate (XOR refers to an exclusive OR, otherwise known as an exclusive
disjunction operator), which would exist for a pair of lower-level channels signaling
an initial pattern match or nonmatch, and a second XOR gate, which would exist
for another pair of lower-level channels signaling expectancies confirmed or vio-
lated (i.e., each decision choice or option would be represented by its own chan-
nel). The output from the two pairs of channels would be combined with an AND
gate, which would lead to a final decision (i.e., an “implement course of action”
decision or a “diagnose/clarify” decision, depending upon the particular combina-
tion of outputs from the lower-level channels). An analogous type of model has been
described by Townsend and Wenger (2004). We will defend this choice of computa-
tional architecture later in this paper, in the section on RPD model structure.

This type of system can lead to an interesting phenomenon when decision
dynamics are considered, namely decision priming. Decision priming can occur
when the activation of the two parallel channels is staggered in time. An example
of decision priming comes from a set of laboratory phenomena called conjunction
benefits and conjunction costs, which can also be placed in a PCNDO framework.

Conjunction Benefits and Conjunction Costs
In the conjunction benefits and conjunction costs (CBCC) research (Fournier,

Bowd, & Herbert, 2000; Fournier, Eriksen, & Bowd, 1998; Fournier, Herbert, &
Farris, 2004; Fournier, Patterson, Dyre, Wiediger, & Winters, 2007; Fournier,
Scheffers, Coles, Adamson, & Vila, 2000), an individual has to render a judgment



about the presence or absence of a conjunction of two target features in a briefly
exposed stimulus. When the two stimulus features differ in their speed of discrim-
ination, correct decisions indicating the presence of the conjunction are faster
than correct responses made to the single feature for which discrimination is the
slowest. In this case, the feature for which discrimination is the fastest primes the
decision made about the conjunction. This is called conjunction benefits.

Moreover, correct decisions indicating the absence of a conjunction are
delayed if the feature for which discrimination is the fastest is present, relative to
when neither target feature is present. This also indicates that a single feature can
prime decisions made about the conjunction. It is assumed that the target feature
for which discrimination is the fastest incorrectly primes a central decision
process that the target conjunction is present. Delayed activation resulting from
the feature for which discrimination is the slowest must override this primed
decision, which takes additional processing time. This is called conjunction costs.
Overall, the time course of such decision priming is measured in hundreds of
milliseconds.

For example, representative data from Fournier et al. (2007) show the follow-
ing: The reaction time (RT) for rendering a correct “present” decision about the
fastest feature by itself was 460 ms, whereas it was 525 ms for the slowest feature.
The RT for rendering a correct “present” decision about the conjunction of the two
features was 490 ms, which was faster than the RT for the slowest feature, thus
showing evidence of conjunction benefits. The RT for rendering a correct “absent”
decision about the conjunction was 620 ms when the fastest target feature was
present (but the slowest target feature was absent, thus the conjunction was
absent), relative to an RT of 490 ms when neither target feature was present, thus
showing evidence of conjunction costs.

Note that Fournier and colleagues (Fournier et al., 1998, 2004, 2007; Fournier,
Bowd, et al., 2000; Fournier, Scheffers, et al., 2000) have shown that the actual
empirical reaction times depend upon stimulus parameters such as stimulus size
and contrast, so there is a range of values reported in the literature. The important
point is that one stimulus cue must be processed faster than another cue for this
kind of decision priming to occur. Many of the assumptions regarding the priming
interpretation of this pattern of results have been thoroughly discussed by
Fournier and colleagues (see, e.g., Fournier, Bowd, et al., 2000; Fournier et al.,
1998, 2007), and therefore these assumptions will not be discussed here.

The purpose of the present study was to take a computational model of the
dynamics of the CBCC phenomena and generalize that computational structure to
Klein’s RPD framework. We did so in order to make predictions about intuitive
decision making in naturalistic contexts. The prediction that we make from our
modeling efforts is that the phenomenon of decision priming will occur in natura-
listic settings.

Our computational model of the CBCC phenomena was validated by compar-
ing its output with the aforementioned CBCC trends reported by Fournier et al.
(2007). (Because the structure of our CBCC model is exactly analogous to our
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model of the RPD process, which we will present in detail, in an effort to save space
and eliminate redundancy we have decided not to formally present our CBCC
model.) Our model RTs were as follows: fastest feature � 438 ms, slowest feature �
538 ms, conjunction present � 513 ms. Thus, simulated RT for the conjunction
present response fell between the simulated RT values for the fastest and slowest
feature responses, which revealed that the model simulated conjunction benefits.
Our model also generated the following RTs: neither feature present (conjunction
absent response) � 513 ms, only fastest feature present (also conjunction absent
response) � 975 ms. Thus, simulated RT for the conjunction absent response
when the fastest feature was present was longer than RT for the same response
when neither feature was present, which showed that the model simulated con-
junction costs.

We next recalibrated our CBCC model for use as a framework for Klein’s RPD
model. Changes in system parameters were chosen so that decision making in
Klein’s model would take 10 to 20 s. This time scale was chosen based on a rough
estimate of the timing of decision making by fire ground commanders, as sug-
gested by Klein (personal communication, August 15, 2008). Our computational
model of Klein’s framework is presented next.

Recently, there have been other reports of models of the RPD process. For
example, Warwick, McIlwaine, Hutton, and McDermott (2001) have simulated
Klein’s RPD model using a resource allocation task and a computational model
that implemented a similarity-based recognition routine. Mueller (2009) has
developed a model of the RPD process based on a Bayesian decision framework.
Although interesting, those efforts did not focus on the dynamics of decision mak-
ing. In the present study, we simulated the dynamics of several aspects of Klein’s
RPD model using system dynamics modeling.

System Dynamics Modeling
We wished to implement a computational model of Klein’s RPD framework

that would focus on the dynamics of the decision-making process. In doing so,
the model would not perform any actual pattern recognition, nor would it actu-
ally generate expectancies; this is similar to other models of reaction time, such as
random walk/diffusion models (see, e.g., Ratcliff, 1978, 2001). Rather, the pur-
pose of the model was to account for the time course of those processes in a way
that investigates decision priming. To do so, we used a technique called system
dynamics modeling. This approach examined the dynamical interactions among
model components that produced system behavior.

System dynamics modeling was developed in the 1950s and 1960s by Jay W.
Forrester (e.g., 1961, 1968) as an approach for analyzing the dynamics of complex
systems that entail feedback loops, such as business systems, urban systems, and
ecological systems. The existence of feedback loops complicates system analysis
because system output is fed back into the system as input. Feedback loops can
produce exponential growth or exponential decay, which may be further modified
via higher-order connections, thus creating highly nonlinear behavior. In many
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cases, feedback systems possess an equilibrium or set point and thus constitute a
control system. In these kinds of systems, behavior varies over time in a compli-
cated manner that cannot be understood by simply looking at the system in a
static snapshot. Rather, the dynamics of such systems must be simulated and
allowed to evolve over time in order for one to gain a true understanding of sys-
tem behavior (Sterman, 2000). For example, this approach has been used to
model the dynamics of complex systems that have contained hundreds of state
variables, such as economic systems (Sterman, 2000).

In system dynamics modeling, computational structures are created that repre-
sent systems of differential equations of varying degree. One can create the compu-
tational structure of a system by using a small set of elements that are interconnected
in complex ways. These elements include a “stock,” which is a component repre-
senting integration (represented in our diagrams as a rectangle); a “flow,” which is
a component representing rate of change or a derivative (represented as a thick
arrow); a “connector,” which is a component representing feedback or other types
of connections (shown as a thin arrow); and a “converter,” which is a component
representing a constant, a variable, an expression, or a conditional logic statement
(represented as a circle). It is important to note that these components are not psy-
chological constructs; they are mathematical constructs that serve to model a sys-
tem of differential equations. The solution to the system of differential equations
can be estimated by solving a system of difference equations using a stepwise
numerical integration technique.

RPD Model Structure

The system dynamics model of the RPD framework is shown in Figure 2, which
is composed of three levels of processing. These three levels flow from the left side
of the figure to the right side: (a) integration processes involving different kinds of
information, shown going down the left side of the figure; (b) mental events con-
cerning recognition or expectancies, depicted in the middle of the figure; and (c) a
central decision process rendering an “implement course of action” decision or a
diagnose decision, shown on the right side of the figure.

These three levels of processing correspond to putative human cognitive
processes discussed in the CBCC literature (Fournier, Bowd, et al., 2000; Fournier
et al., 1998, 2004, 2007; Fournier, Scheffers, et al., 2000). In that literature, it has
been assumed that sensory mechanisms exist for the initial capture and integration
of information about various sensory dimensions (e.g., hue or shape of a target).
Also, it has been assumed that once the initial information becomes integrated,
subsequent perceptual processes recognize various aspects of the integrated sensory
information. Finally, this literature has posited that the outputs of the recognition
processes are combined in the service of making decisions about various combi-
nations of perceptual/situational cues.

Moreover, with respect to our dynamical model of the RPD model, we have
assumed that the recognitional process is primarily a perceptual situational-pattern
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recognition process, rather than a high-level cognitive process that entails explic-
itly elaborated knowledge structures. We based this assumption upon Klein’s
(1998, p. 32) description of the RPD process, wherein individuals with expertise
(i.e., fire ground commanders) made intuitive decisions without initially being
aware of the basis for them; in other words, the information underlying the intu-
itive decisions was tacit or implicit (see also Reber, 1989, p. 232). Also, as dis-
cussed earlier, in the RPD model an individual may mentally simulate a course of
action before implementing it, which would represent an analytical component of
the model (Klein, 2008) and could involve explicitly elaborated knowledge, but
this would occur subsequent to the pattern recognition process.

Turning back to Figure 2, the rectangles in the figure are integrators that accu-
mulate various levels of information (evidence), activation, or decision commitment.

Figure 2. System dynamics model of the recognition-primed decision model. Rectangles
down the left side are integrator processes that integrate information about an initial 
situation or other information. Rectangles down the middle are integrators that represent
pattern recognition or expectancies confirmed or violated. Expressions at the top of 
the diagram are representative of the computation each type of integrator performs.
Diamonds represent comparison and logic mechanisms that relate different combinations
of inputs to a given decision by the central decision process: implement course of action 
or diagnose. Pattern comparison and expectancies comparison processes: logical OR
decision operators; decision processes shown in diamonds: logical AND decision operators.
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These levels have a capacity (C) of 100, meaning that up to 100% of available
information could be accumulated, or up to 100% of activation could occur, or up
to 100% of commitment could be made for a given decision. Values of k1, k2, and
� were chosen such that decision making took 10 to 20 s and story building took
about 1 min. In calibrating our model to these estimates, we took values of k1, k2,
�1, and �2 in our CBCC model (k1 � 2.05, k2 � 1.42, �1 � �2.35, �2 � �1.5)
and scaled them so that the output of our RPD model was consistent with those
estimates. (Parameter values became k1 � 1.0, k2 � 0.4, �1 � �2 � �0.65.)

Figure 2 shows that the initial situation was represented as a pair of informa-
tion flows: initial familiar-situation information followed by pattern recognition,
or initial unfamiliar-situation information followed by pattern nonrecognition.
Subsequent information confirming or violating expectations was also represented
as a pair of information flows, with each flow broken into two parts: subsequent
other information A followed by expectancies confirmed, or subsequent other
information B followed by expectancies violated.

Thus, each lower-level decision (concerning recognition or expectancies) was
represented by two flows—one for each decision state or alternative (Smith &
Vickers, 1988)—which were combined with an XOR decision operator, and each
flow was represented as a discrete two-stage process (Meyer, Yantis, Osman, &
Smith, 1985). The processing flows for the lower-level decisions (recognition and
expectancies) were combined with an AND operator. Only one flow of each pair—
recognition or nonrecognition, and expectancies confirmed or violated—was active
at any one point in time. Although this model may at first glance appear overly com-
plicated, the complexity is necessary, given that we are modeling pairs of lower-level
decisions that get combined at a higher level, leading to a central (final) decision.

The several assumptions of the model were as follows:

1. Information (evidence) about a particular initial situation, leading to a pattern
recognition or nonrecognition response, and subsequent information, leading
to expectancies confirmed or violated, accumulated in a time-variant fashion.
Such time-variant processes are important for maximizing rewards (i.e., suc-
cessful action taken) when passage of time may lead to a changing situation
that negates the decision-making process (see Ditterich, 2006).

2. Two sets of independent processing streams, with different time courses, oper-
ated in parallel to determine decision making. This approach, which involved
two XOR decision operators (one for each set of processing streams) nested
within a higher-order AND decision operator (which rendered a final deci-
sion), was analogous to a version of the PCNDO model of Townsend and
Wenger (2004) and was necessary to model decision priming. This approach
was different from a classic random walk or diffusion model, in which evi-
dence is accumulated as a single signed total representing differences between
the evidence accumulating for different decision alternatives before the deci-
sion stage is reached (Busemeyer & Townsend, 1993; Ratcliff, 1978, 2001;
Usher & McClelland, 2001).
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3. Pattern recognition (both the initial situation and the subsequent information
leading to expectancies) was a discrete two-stage process that required a
threshold of familiarity to be reached before the next processing stage began.
Meyer et al. (1985) suggested that such a framework was appropriate for sim-
ple binary decisions when stimuli are mapped to responses in a compatible
fashion. The two-stage process was also required for model implementation,
in which output from the pattern recognition/nonrecognition stage and from
the expectancies confirmed/violated stage was a time-limited response that
was integrated by the central decision process.

4. Story building started earlier for an atypical/unfamiliar situation than for a
typical/familiar situation with expectancies violated, consistent with the gen-
eral description of the RPD model (Klein, 1997, 1998, 2008).

5. The time course of decision making depended upon system parameters
growth/decay factor k, capacity C, and scaling factor �.

6. In our basic presentation of our model that follows, the model was determinis-
tic and lacked stochasticity, similar to the ballistic accumulator model of Brown
and Heathcote (2005). Later in the paper, we will discuss implementing sto-
chastic effects by varying the starting point of the accumulation of information.

7. Our model of dynamics focused solely upon process and ignored knowledge,
unlike Klein’s RPD framework, which focused mainly upon the role of knowl-
edge and expertise in decision making. These two approaches are comple-
mentary: In principle, the dynamics of the system would, in part, be
determined by how people use knowledge (implicitly or explicitly). Moreover,
whereas process can be dictated, in part, by knowledge, process is also
impacted by computational architecture, which was our current focus.

8. For simplicity, we do not implement the cyclic nature of Klein’s RPD model,
whereby a decision maker may take several passes through the overall process to
reach a final decision. This is because implementing the cyclic nature of the model
would not directly add anything new about decision priming, which is the main
issue explored in our model. To do so would simply require a connection from
the story-building process to various pairs of the initial information-integration
processes (see Figure 2), which would start model activation all over again.

We now turn to the details of our model.

Initial Integration Processes
The initial integration processes integrate information (evidence) about a

given situation. Going down the left side of Figure 2, this information could be
consistent with either a familiar situation or an unfamiliar situation and supple-
mented with subsequent information that either confirmed expectancies (“other
information A”) or violated expectancies (“other information B”). Integration
processes were modeled as capacitated growth processes based on a logistic func-
tion (i.e., a time-variant accumulation rate; see Ditterich, 2006), with capacity
equal to 100% of information that a given individual could accumulate. The



expression for these initial integration processes, using the familiar-situation infor-
mation as an example (see Appendix A for all updating equations; see Appendix B
for the program code), was

(1)

in which FSI � familiar situation information, t � time, k � growth or decay
fraction (in which k � k1, k2), and C � capacity. In system dynamics, the logistic
function is modeled as a set of coupled positive and negative feedback loops, with
kFSI defining the positive feedback loop (growth) and �kFSI(FSI/C) defining the
negative feedback loop (decay). Here, k1 � k2; thus situational information accu-
mulated at a faster rate than did other information.

The model represented a given decision-making scenario by activating a given
combination of initial integration processes with a starting value of 10—for exam-
ple, FSI(0) � 10. To deactivate, initial value was 0. This initial value was arbitrary,
and the model could be calibrated to accommodate any other small initial value.
Thus, to simulate the scenario of a familiar situation with expectancies confirmed,
for example, the information integration processes labeled “familiar situation
information” and “other information A” were started with a value of 10, whereas
the information integration processes labeled “unfamiliar situation information”
and “other information B” were started with a value of 0.

A threshold mechanism with a criterion value of 50 units followed each infor-
mation integration mechanism. A threshold setting of 50 units meant that more
than half of the perceptual information must have been accumulated before subse-
quent processing could respond, which is consistent with the traditional definition
of threshold (Blake & Sekuler, 2005). The existence of this threshold created a time
delay, and therefore a discrete two-stage processing flow, consistent with sugges-
tions by Meyer et al. (1985). For instance, for familiar situation information,

IF FSI � 50, THEN FSI. ELSE 0. (2)

Recognition/Expectancy Mechanisms
The mechanisms for pattern recognition and expectation (middle portion of

Figure 2) integrated the information from the initial integration processes to generate
a time-limited response: an initial recognition or nonrecognition response, and an
expectancies confirmed or expectancies violated response (the latter of which was
also conceptually equivalent to a recognition response). The response of these
mechanisms was a rounded pulse profile that decayed to zero when the corre-
sponding prior initial integration process (Equation 1) reached full capacity. Here,
the concept was that as information about a familiar situation became integrated,
the pattern recognition mechanism began to generate an initial recognition
response that ended when all the information about that situation had been accu-
mulated. (A time-limited response was also needed so that the amount of decision

net growth rate of information = = ⋅dFSI

dt
k FS( II k FSI

FSI

C
) ,− ⋅ ⋅⎛

⎝⎜
⎞
⎠⎟
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commitment by the central mechanism would level off once the time-limited
response decayed to zero, which allowed the recognition response and the
expectancies response each to contribute to one half of the final decision.)

Accordingly, the net growth rate of these recognition/expectancy mechanisms,
using the pattern recognition mechanism as example, was

(3)

in which PR is the level of activation of the pattern recognition response and FSI, k,
t, and C are as defined previously. Here, the input to the mechanism is a k-weighted
FSI variable, and �kPR is a negative feedback decay loop: As FSI reached capacity,
1 � FSI/C went to zero, the input ceased, and then the accumulation decayed.

Output from these recognition and expectancy mechanisms projected to
processes called “pattern comparison” and “expectancies comparison,” each of
which compared either two types of situational patterns or two types of expectan-
cies to determine whether the information being integrated by the pattern and
expectancy mechanisms was consistent with an “implement course of action” deci-
sion (if not, then a sign change was implemented, which affected the final decision):

IF (pattern recognition � pattern nonrecognition) THEN
(4)

(pattern recognition * �) ELSE (pattern nonrecognition * ��),

in which � was a scaling factor that kept information emanating from the pattern
comparison and the expectancies comparison mechanisms balanced (so that each
type of signal contributed to one half of the total response of the central decision
process). The output from these two comparison mechanisms projected to the
central decision process for rendering a final decision.

Central Decision Process
The central decision process rendered a final decision to either implement a

course of action or to diagnose the situation further (leading to a story-building
algorithm). The central decision process integrated information from the two
comparison mechanisms and determined whether both a familiar situation was
perceived and other information confirmed expectations. The central decision
process was composed of two interconnected decision reservoirs, and was activated
by a logic statement (called “Decision” in the diamond in Figure 2) that compared the
streams of information coming from the pattern comparison process and expectan-
cies comparison process to determine which combination was present:

IF [(pattern comparison � 0) AND (expectancies comparison � 0)] OR

(5)
[(expectancies comparison � 0) AND (pattern comparison � 0)] THEN
[MAX (pattern comparison, expectancies comparison) * �1] � MIN 
(pattern comparison, expectancies comparison) ELSE 
(pattern comparison � expectancies comparison).

dPR

dt
k FSI

FSI

C
k PR= ⋅( ) ⋅ −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − ⋅( )1 ,
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This logic combines signals from the two comparison mechanisms in an addi-
tive fashion. If output from one comparison mechanism is positive and output
from the other comparison mechanism is negative, then the output from the posi-
tive mechanism (i.e., the MAX function) is multiplied by �1 and added to the
output of the negative mechanism (the MIN function) to yield a negative flow
affecting the central decision process (leading to a “diagnose” decision). If the out-
put from both comparison mechanisms is negative, then processing goes to the
ELSE statement, which simply adds two negative flow rates to yield a negative
flow affecting the central decision process (again, a “diagnose” decision). If output
from the two comparison mechanisms is positive, then processing goes to the
ELSE statement, which adds two positive flows to yield a positive flow rate affect-
ing the central decision process (an “implement course of action” decision).

Each decision reservoir symbolized the amount of decision commitment for
each decision: “implement course of action” or “diagnose the situation.” The simu-
lation began with decision ambiguity (50 in each of the two reservoirs). Over
time, the amount of decision commitment flowed from one reservoir into the other,
depending on incoming evidence from pattern and expectancies comparison
processes. The rate of flow into or out of one or the other decision reservoir was
determined by the sum of the activation levels of the comparison mechanisms.
For the “implement course of action” reservoir,

(6)

in which ICA � reservoir containing the level of commitment to the “implement
course of action” decision, CDGR was the central decision growth rate � (pattern
comparison � expectancies comparison), and ICA(0) was the initial value of ICA,
in which ICA(0) � 50. Equation 6 indicates that activations of the pattern compar-
ison mechanism and expectancies comparison mechanism were added and the
sum projected to the central decision process as a rate, which ended up being inte-
grated by the central decision process to become an increasing level of decision
commitment. An analogous definition would apply to the “diagnose” reservoir.

For each simulated decision, one reservoir accumulated a total of 100 percent-
age points, representing complete commitment to the corresponding option,
whereas the other reservoir went to 0, representing a complete abandonment of
the opposing option.

Modeling Results and Analysis

Deterministic Model
The model we have described was implemented using the Stella software

package, version 9.2 (ISEE Systems, Inc., Waltham, MA). The Euler method of
numerical integration (Sterman, 2000) was used with dt � 0.1. For the pattern
comparison process, k1 � 1.0 and � � �0.65; for the expectancies comparison
process, k2 � 0.4 and � � �0.65.

ICA CDGRdt ICA= +∫ ( ),0
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We ran simulations of model responding for various combinations of pattern
and expectancy conditions. Figure 3 shows the results of a simulation of the
“implement course of action” decision, which involved initial recognition of a
familiar situation and having expectancies confirmed. The dashed and the dash-
dot-dash curves, respectively, show the integration of the familiar situation infor-
mation and the response of the pattern recognition mechanism. The dot and the
dash-dot-dot curves, respectively, show the integration of other information A and
the response of the expectancies-confirmed mechanism. It can be seen that the
recognition of a familiar situation occurred first, followed by the confirmation of
expectancies, as the logic of this scenario dictates. The final decision to implement
a course of action (100% decision commitment) took about 8 s.

Figure 4 shows the results of a simulation of the “diagnose” decision, which
involved nonrecognition of an atypical or unfamiliar situation and the presence of
other information B, which produced an expectancies-violated response. The dashed
and the dash-dot-dash curves, respectively, show the integration of the unfamiliar
situation information and the response of the nonrecognition process. The dot
and the dash-dot-dot curves, respectively, show the integration of other informa-
tion B and the response of the process registering that expectancies were violated.
Recognition that the situation was unfamiliar occurred first, followed by a viola-
tion of expectancies. The final decision to diagnose the situation further (100%
decision commitment) took about 8 s.

Figure 3. “Implement course of action” decision with a typical and familiar situation and
expectancies confirmed. Time course of the percentage decision commitment or activation
is shown for various model components. The dashed line shows the integration of infor-
mation about an initial typical/familiar situation, which leads to a pattern recognition
response as indicated by the dash-dot-dash line. The dotted line shows the integration of
other information A, which leads to an expectancies-confirmed response as indicated by
the dash-dot-dot line. The thick solid line shows the time course of the final decision to
implement course of action (which took about 8 s).
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Figure 5 shows the results of a simulation of the “diagnose” decision, which
involved initial recognition of a typical and familiar situation, but the presence of
other information B led to an expectancies-violated response. Here, the initial
information that the situation was familiar primed the central decision process to
begin to decide to “implement a course of action” (i.e., curve labeled “diagnose”
begins to dip down between 2 and 6 s in the simulation), but subsequent informa-
tion B produced an expectancies-violated response, and the central decision
process reversed itself and eventually produced a decision to “diagnose.” The final
decision to diagnose the situation (100% decision commitment) took about 16 s.

This delay in rendering a “diagnose” decision (16 s in Figure 5 vs. 8 s in Figure 4)
because of the presence of conflicting information is thought to be the result of
decision priming. Decision priming occurred in the present context when a given
situation was recognized and the decision to implement a course of action was
primed but subsequent information violated expectations, which eventually led to
a decision for diagnosis. The decision to diagnose was delayed relative to when
the initial situation was unfamiliar and a decision to implement a course of action
had not yet been primed. This decision priming, in which an initial situation that
appeared typical and familiar and thus was initially recognized but subsequent
expectancies were violated, was analogous to the phenomenon of conjunction
costs discussed earlier (Fournier et al., 1998, 2004, 2007; Fournier, Bowd, et al.,
2000; Fournier, Scheffers, et al., 2000).

Figure 4. “Diagnose situation further” decision with an unfamiliar situation and
expectancies violated. Time course of the percentage decision commitment or activation
is shown for various model components. The dashed line shows the integration of infor-
mation about an initial unfamiliar situation, which leads to a pattern nonrecognition
response as indicated by the dash-dot-dash line. The dotted line shows the integration of
other information B, which leads to an expectancies-violated response, as indicated by
the dash-dot-dot line. The thick solid line shows the time course of the final decision to
diagnose the situation.
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Figure 6 shows the same simulation results that were depicted in Figure 5 across
a longer time scale. (The curve for “implementing a course of action” decision has
also been added.) This time scale permits one to see the time course of story build-
ing, which was initiated by the decision to diagnose and took about 60 s from the
beginning of the simulation to complete. This process of story building was mod-
eled as a logistic function (analogous to Equation 1, with k � 0.15), with 100%
indicating the total amount that a story could be mentally built in a given situation.

The model took 8 s to decide to implement a course of action and between 8
and 16 s to decide to diagnose a situation further (depending upon the presence or
absence of conflicting information). The model took an additional 60 s to perform
a story-building operation following the decision for diagnosis (see Figure 7).

As discussed by Klein (1997, 1998, 2008), an individual may mentally simu-
late a course of action before actually implementing it, which may take about the
same amount of time as the process of story building (i.e., the act of mental simu-
lation is a form of story building). This act of mental simulation would occur

Figure 5. “Diagnose the situation further” decision with a typical and familiar situation but
expectancies violated. Time course of the percentage decision commitment or activation
is shown for various model components. The dashed line shows the integration of infor-
mation about an initial typical/familiar situation, which leads to a pattern recognition
response, as indicated by the dash-dot-dash line. The dotted line shows the integration of
other information B, which leads to an expectancies-violated response, as indicated by
the dash-dot-dot line. The thick solid line shows the time course of the final decision to
diagnose the situation. The initial dip in the diagnose curve between 2 and 6 s is 
attributable to decision priming: Information about a familiar situation primed the 
central decision process to begin to decide to implement a course of action (this curve
dips down away from the commitment to diagnose), but subsequent other information B
indicated the need for a decision to diagnose, which was finally rendered after an 8-s
delay (compare with Figure 4).



268 Journal of Cognitive Engineering and Decision Making / Fall 2009

between the pattern recognition process and the decision to implement a course
of action in Figure 7, assuming that expectancies are confirmed. In our simulation
of the RPD model, mental simulation would add an additional 60 s to the “imple-
ment course of action” decision (figure not shown) and appear analogous to the
curve depicting the story-building process shown in Figure 6.

Stochastic Effects
In exploring the role of stochastic effects on model behavior, we needed to

choose from among a large set of possible implementations. To narrow our options,

Figure 6. Same as Figure 5 (“diagnose the situation further” decision with a typical 
and familiar situation but expectancies violated) but with the time course of decision
commitment or activation shown with an extended time scale. The dotted line indicates
the decision to diagnose the situation; the dashed line shows the “implement course of
action” decision, which has been added to this figure. The thick solid line represents the
time course of story building.

Figure 7. Diagram of the recognition-primed decision model (Klein, 1997, 1998, 2008),
shown with the simulated latencies for decision making and story building.
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we chose to examine the effect of variation in the starting point of information accu-
mulation, which corresponded to the existence of a decision bias and has been a
common manipulation in many random walk/diffusion models (e.g., Ratcliff, 1978,
2001). Moreover, because we were primarily interested in decision priming in
this study, we elected to study the scenario involving the recognition of a familiar
situation but with violated expectancies. Recall that this scenario produced an
additional delay in decision making of 8 s relative to when an initial situation was
unfamiliar and not recognized (see Figure 5). We used the simulated outcome in
Figure 5 as the benchmark with which the effects of variation in starting point were
compared.

We simulated the decision-priming scenario with different values of FSI(0)—
that is, when FSI(0) � 1, 2, 5, 20, or 50; recall that in our deterministic model,
FSI(0) � 10. As before, we kept OIB(0) � 10 (in which OIB � other information
B). The results revealed that the corresponding simulated reaction times to make a
“diagnose the situation further” decision were, respectively, 9.7, 11.0, 13.4, 17.5,
and 21.7 s; recall that when FSI(0) � 10, the simulated RT was 15.5 s.

Thus, we found that as the starting point of information accumulation for the
familiar situation was decreased from its initial value of 10, decision priming was
lessened. This would correspond to the existence of a decision bias against seeing
the initial situation as being typical and familiar and its pattern being recognized.
As the starting point of information accumulation for the familiar situation was
increased, decision priming increased. This would correspond to the existence of
a decision bias toward seeing the initial situation as being typical and familiar and
its pattern being recognized.

Discussion

Klein (1997, 1998, 2008) has proposed a conceptual framework of intuitive
decision making called the recognition-primed decision (RPD) model. In order to
model the dynamics of Klein’s framework, we created a parallel-channels, nested
decision operator model (PCNDO; see Townsend & Wenger, 2004), which was
based on a system dynamics model of the conjunction benefits and conjunction
costs phenomena (e.g., Fournier, Bowd, et al., 2000; Fournier et al., 1998, 2007).
In our model, there were two types of decisional operators: an XOR gate that
existed for each of two pairs of lower-level channels, followed by an AND gate that
combined the outputs of the two pairs of channels. With staggered timing
between the two pairs of channels, a phenomenon called decision priming could
be simulated.

In more concrete terms, simulated priming occurred when a familiar initial
situation occurred with subsequent violated expectancies: The familiar situation
primed activation of the central decision process to begin to decide to implement
a course of action, so that when expectancies were violated, the final decision to
“diagnose” took longer than when an initial situation was unfamiliar. The cost of
decision priming was a decision delay of 8 s. Generally, our simulation of the RPD



model suggests that the time it takes to make pattern-based decisions may be
affected by whether incoming information is compatible or conflicting. Conflicting
information can lead to decision priming, whereby a tendency to decide one way
is counteracted by subsequent information, a process that delays overall decision
making. Therefore, although intuitive decision making based on pattern recogni-
tion reduces the problem of cognitive inference to one of identification and recog-
nition (Lopes & Oden, 1991) and thus is highly efficient, it may be vulnerable to
conflicting cues and information.

An analogous pattern of results would occur with changes in temporal scale,
and a recalibration of model parameters for representing different decision scenar-
ios, so long as the relative timing is lagged between one set of environmental cues
and patterns and a conflicting set of cues and patterns. Accordingly, the model
presented in this paper can be expanded to encompass a wide range of situations
that entail intuitive decision making involving potentially conflicting information.
This model represents a class of race models in which the differential timing of
multiple events can create decision priming (Fournier et al., 1998, 2004, 2007;
Fournier, Bowd, et al., 2000; Fournier, Scheffers, et al., 2007).

One way the validity of this model can be tested and falsified would be to
empirically determine whether decision priming actually occurs in the contexts
within which Klein’s RPD model would be operative. On this point, it is interest-
ing to note that Mitchell and Flin (2007) recently reported that they failed to find
evidence for decision priming when police-authorized firearms officers were
responding to potential threats in a firearms training simulator. Klein’s RPD model
would be applicable to this type of situation. In an attempt to induce decision
priming, these authors had the officers hear a threat or neutral briefing informa-
tion prior to experiencing shoot or no-shoot scenarios. The results showed that
the type of briefing had no effect on the officers’ decision to shoot.

One reason for the failure to observe decision priming in the Mitchell and Flin
(2007) study may be that priming, in general, does not occur in naturalistic settings
and therefore the CBCC model was not an appropriate foundation for our system
dynamics model of the RPD model. However, a recent study by Winterbottom et al.
(2009) found that decision priming occurred in a U.S. Air Force simulated air-to-
ground attack decision scenario, which entailed vehicles (i.e., tanks) positioned
on a ground plane (desert scene) seen in perspective view. Thus, decision priming
did occur in a simulated naturalistic setting.

A second reason for the failure to observe decision priming in the Mitchell and
Flin (2007) study may be that the generalization of the CBCC computational
model to the RPD model was flawed. However, we think that this is unlikely, given
that the same computational structures were used and we varied only four model
parameters in order to recalibrate the model to the new time scale.

A third reason for the failure to observe decision priming in the Mitchell and
Flin (2007) study may be that the decision-making process would be inherently
intuitive and therefore be driven by situational pattern recognition (i.e., the offi-
cers had only seconds or less to decide whether to shoot back at the virtual
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suspect, based on what they perceived in the scene), whereas the briefing infor-
mation was given verbally. Because symbolic and verbal material are related to the
analytical reasoning process (e.g., Evans, 2008; Hammond, 2007; Hogarth, 2001;
Kahneman & Frederick, 2002; Sloman, 1996; see especially Hammond, Hamm,
Grassia, & Pearson, 1997), the briefing information may have had less of an
impact on intuitive decision making than if these authors had used a perceptual
priming stimulus. In other words, it may be more difficult for analytical process-
ing to prime intuitive processing than for intuitive processing to prime intuitive
processing, a conjecture supported by the conjunction benefits and conjunction
costs literature. Our system dynamics model of Klein’s RPD framework involves
perceptual/situational (intuitive) priming stimuli.

In order to validate our model in the absence of quantitative predictions in the
intuitive decision-making literature, we could expand our model to incorporate
analytical decision making and the inability of the latter to prime intuitive deci-
sion making, as shown by Mitchell and Flin (2007). We intend to do so over the
next couple of years; thus, in what follows we provide only a brief sketch of this
expanded model. Based on the framework by Hogarth (2005), we would create
two basic streams of processing: an intuitive pattern recognition stream (which
would include all of the PCNDO structure) and an analytical stream. The analyti-
cal stream would include working memory. Both the intuitive stream and the ana-
lytical stream would have bidirectional connections to long-term memory, and
both would feed a central decision process. To account for the Mitchell and Flin
result, several architectures are possible: (a) no links between the two streams; (b)
links between the two streams, the activation of which requires precise timing;
and (c) links between the two streams which are modulated by emotional arousal.

If validated, and with further elaboration, our model might potentially be use-
ful in the development of decision support tools and training aids for robust deci-
sion making. Robust decision making refers to the act of making efficient (but not
necessarily optimal) decisions under conditions of high uncertainty (Ullman, 2006).
In practice, robust decision making may also include the need for making rapid
decisions under stress. The term robustness is important, for it means that the decision-
making process should be successful under a wide range of conditions. In the field of
systems science, robustness means that decision rules are operationally meaningful
even when inputs to the system take on extreme values (Sterman, 2000, pp. 519).

In recent times, attempts to make decision making robust have typically involved
statistical approaches, which deal with high levels of uncertainty in information,
utilities, or probabilities (e.g., Krokhmal, Murphey, Pardalos, Uryasev, & Zrazhevsky;
2003; Regan et al., 2005). However, another approach to robust decision making,
largely ignored by mainstream decision science, would be based on intuitive deci-
sion making. This is because intuition and its attendant pattern recognition is good
for rendering decisions under stressful conditions involving data overload, high
uncertainty, time pressure, high risk, high stakes, and ill-defined goals (Klein,
1997, 1998, 2008; Zsambok & Klein, 1997). Thus, intuitive reasoning could be a
foundation for promoting robust decision making.
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We could also increase the complexity of our model to deal with multiple
priming stimuli, which may help predict conditions under which priming would
be enhanced versus conditions under which it would be eliminated. This informa-
tion, in turn, could help in the design of immersive decision environments by cre-
ating perceptual cues that are selectively presented and timed in order to prime
decision making toward a certain response when an individual would be over-
whelmed by information overload. The present effort at modeling the recognition-
primed decision model of Klein (1997, 1998, 2008) represents a step in this
direction.

Appendix A

Here are the updating equations used in our RPD model.

Initial Integration Processes
For the net growth rate of familiar situation information,

dFSI/dt � (k1 . FSI) � (k1 . FSI . FSI/C),

in which FSI � familiar situation information, t � time, k1 � growth or decay
fraction, and C � capacity.

For the net growth rate of unfamiliar situation information,

dUSI/dt � (k1 . USI) � (k1 . USI . USI/C),

in which USI � unfamiliar situation information and t, k1, and C are as defined
previously.

For the net growth rate of other information A,

dOIA/dt � (k2 . OIA) � (k2 . OIA . OIA/C),

in which OIA � other information A, k2 � growth or decay fraction, and t and C
are as defined previously.

For the net growth rate of other information B,

dOIB/dt � (k2 . OIB) � (k2 . OIB . OIB/C),

in which OIB � other information B and t, k2, and C are as defined previously.

Recognition/Expectancy Mechanisms
For the net growth rate of the pattern recognition mechanism,

dPR/dt � [(k1 . FSI) . (1 � FSI/C)] � (k1 . PR),

in which PR is the level of activation of the pattern recognition response and FSI,
k1, t, and C are as defined previously.

For the net growth rate of the pattern nonrecognition mechanism,

dPNR/dt � [(k1 . USI) . (1 � USI/C)] � (k1 . PNR),

in which PNR is the level of activation of the pattern nonrecognition response and
USI, k1, t, and C are as defined previously.
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For the net growth rate of the expectancies confirmed mechanism,

dEC/dt � [(k2 . OIA) . (1 � OIA/C)] � (k2 . EC),

in which EC is the level of activation of the expectancies confirmed response and
OIA, k2, t, and C are as defined previously.

For the net growth rate of the expectancies violated mechanism,

dEV/dt � [(k2 . OIB) . (1 � OIB/C)] � (k1 . EV),

in which EV is the level of activation of the expectancies violated response, and
OIB, k2, t, and C are as defined previously.

Appendix B

Here is the program code for our RPD model.
Diagnose(t) � Diagnose(t � dt) � (� Central_Decision_Growth_Rate) * dt
INIT Diagnose � 50
OUTFLOWS:
Central_Decision_Growth_Rate � Decision_Logic
Expectancies_Confirmed(t) � Expectancies_Confirmed(t � dt) � (EC_Growth_
Rate � EC_Decay_Rate) * dt
INIT Expectancies_Confirmed � 0
INFLOWS:
EC_Growth_Rate � OIA_Threshold * EC_Growth_Fraction * (1�(OIA_Threshold/
EC_Capacity))
OUTFLOWS:
EC_Decay_Rate � Expectancies_Confirmed * EC_Decay_Fraction
Expectancies_Violated(t) � Expectancies_Violated(t � dt) � (EV_Growth_Rate �
EV_Decay_Rate) * dt
INIT Expectancies_Violated � 0
INFLOWS:
EV_Growth_Rate � OIB_Threshold * EV_Growth_Fraction * (1�(OIB_Threshold/
EV_Capacity))
OUTFLOWS:
EV_Decay_Rate � Expectancies_Violated * EV_Decay_Fraction
Familiar_Situation_Information(t) � Familiar_Situation_Information(t � dt) �
(FSI_Growth_Rate � FSI_Decay_Rate) * dt
INIT Familiar_Situation_Information � 10
INFLOWS:
FSI_Growth_Rate � Familiar_Situation_Information * FSI_Growth_Fraction
OUTFLOWS:
FSI_Decay_Rate � Familiar_Situation_Information * FSI_Decay_Fraction *
(Familiar_Situation_Information/FSI_Capacity)
Implement_Course_of_Action(t) � Implement_Course_of_Action(t � dt) �
(Central_Decision_Growth_Rate) * dt
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INIT Implement_Course_of_Action � 50
INFLOWS:
Central_Decision_Growth_Rate � Decision_Logic
Other_Information_A(t) � Other_Information_A(t � dt) � (OIA_Growth_Rate �
OIA_Decay_Rate) * dt
INIT Other_Information_A � 0
INFLOWS:
OIA_Growth_Rate � Other_Information_A * OIA_Growth_Fraction
OUTFLOWS:
OIA_Decay_Rate � Other_Information_A * OIA_Decay_Fraction * (Other_
Information_A/OIA_Capacity)
Other_Information_B(t) � Other_Information_B(t � dt) � (OIB_Growth_Rate �
OIB_Decay_Rate) * dt
INIT Other_Information_B � 10
INFLOWS:
OIB_Growth_Rate � Other_Information_B * OIB_Growth_Fraction
OUTFLOWS:
OIB_Decay_Rate � Other_Information_B * OIB_Decay_Fraction * (Other_
Information_B/OIB_Capacity)
Pattern_NonRecognition(t) � Pattern_NonRecognition(t � dt) � (PNR_Growth_
Rate � PNR_Decay_Rate) * dt
INIT Pattern_NonRecognition � 0
INFLOWS:
PNR_Growth_Rate � USI_Threshold * PNR_Growth_Fraction * (1�(USI_
Threshold/PNR_Capacity))
OUTFLOWS:
PNR_Decay_Rate � Pattern_NonRecognition * PNR_Decay_Fraction
Pattern_Recognition(t) � Pattern_Recognition(t � dt) � (PR_Growth_Rate �
PR_Decay_Rate) * dt
INIT Pattern_Recognition � 0
INFLOWS:
PR_Growth_Rate � FSI_Threshold * PR_Growth_Fraction * (1�(FSI_Threshold/
PR_Capacity))
OUTFLOWS:
PR_Decay_Rate � Pattern_Recognition * PR_Decay_Fraction
Story_Building(t) � Story_Building(t � dt) � (SB_Growth_Rate � SB_Initialization
� SB_Decay_Rate) * dt
INIT Story_Building � 0
INFLOWS:
SB_Growth_Rate � Story_Building * SB_Growth_Fraction
SB_Initialization � IF (Diagnose � 90) AND (Diagnose � 91) THEN 10 ELSE 0
OUTFLOWS:



System Dynamics Modeling of Intuitive Decision Making 275

SB_Decay_Rate � Story_Building * SB_Decay_Fraction * (Story_Building/SB_
Capacity)
Unfamiliar_Situation_Information(t) � Unfamiliar_Situation_Information(t � dt)
� (USI_Growth_Rate � USI_Decay_Rate) * dt
INIT Unfamiliar_Situation_Information � 0
INFLOWS:
USI_Growth_Rate � Unfamiliar_Situation_Information * USI_Growth_Fraction
OUTFLOWS:
USI_Decay_Rate � Unfamiliar_Situation_Information * USI_Decay_Fraction *
(Unfamiliar_Situation_Information/USI_Capacity)
Decision_Logic � IF(Expectancies_Comparison � 0) AND (Pattern_Comparison
� 0) OR (Pattern_Comparison � 0) AND (Expectancies_Comparison � 0) THEN
(MAX(Expectancies_Comparison, Pattern_Comparison) * �1) � MIN
(Expectancies_Comparison, Pattern_Comparison) ELSE (Expectancies_Comparison
� Pattern_Comparison)
EC_Capacity � 100
EC_Decay_Fraction � 0.4
EC_Growth_Fraction � 0.4
EV_Capacity � 100
EV_Decay_Fraction � 0.4
EV_Growth_Fraction � 0.4
Expectancies_Comparison � IF(Expectancies_Confirmed � Expectancies_Violated)
THEN (Expectancies_Confirmed * 0.65) ELSE (Expectancies_Violated * �0.65)
FSI_Capacity � 100
FSI_Decay_Fraction � 1
FSI_Growth_Fraction � 1
FSI_Threshold � IF(Familiar_Situation_Information � 50) THEN Familiar_
Situation_Information ELSE 0
OIA_Capacity � 100
OIA_Decay_Fraction � 0.4
OIA_Growth_Fraction � 0.4
OIA_Threshold � IF(Other_Information_A � 50) THEN Other_Information_A
ELSE 0
OIB_Capacity � 100
OIB_Decay_Fraction � 0.4
OIB_Growth_Fraction � 0.4
OIB_Threshold � IF(Other_Information_B � 50) THEN Other_Information_B
ELSE 0
Pattern_Comparison � IF(Pattern_Recognition � Pattern_NonRecognition) THEN
(Pattern_Recognition * 0.65) ELSE (Pattern_NonRecognition * �0.65)
PNR_Capacity � 100
PNR_Decay_Fraction � 1
PNR_Growth_Fraction � 1
PR_Capacity � 100
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PR_Decay_Fraction � 1
PR_Growth_Fraction � 1
SB_Capacity � 100
SB_Decay_Fraction � 0.15
SB_Growth_Fraction � 0.15
USI_Capacity � 100
USI_Decay_Fraction � 1
USI_Growth_Fraction � 1
USI_Threshold � IF(Unfamiliar_Situation_Information � 50) THEN Unfamiliar_
Situation_Information ELSE 0
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